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Abstract

Lagrangian approach is used to simulate the realistic process of cluster formation in circulating fluidized
bed riser. The influence of particle properties, porosity function and gas velocity on the global particle flow

structure, and the formation and development of local regions of higher particle concentration are inves-

tigated. The collision parameters govern the formation of non-homogeneous flow structure because of the

difference of kinetic energy and velocity distribution. Moreover, the porosity function has a significant effect

on the clusters. The gas flows preferentially into the region of high porosity, which leads to non-uniform

drag force on the particles and affects strongly the particle flow structure. Examination of the cluster mi-

crostructure shows that the particle velocity in the cluster is smaller than around it. Segregation of particles

with different diameter and density is also predicted.
� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Gas–solid reactions play an important role in processes dealing with chemistry, metallurgy,
energy generation, petroleum refining, and waste treatment. In many cases, the particle loading is
moderate to high (particle/gas mass flow ratio exceeds 0.1 kg/kg), and wide particle size distri-
bution powders are used for practical and economical reasons. The particle–particle interactions
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and the particle size distribution are known to have significant influence on the hydrodynamics of
gas solid reactions (Gauthier et al., 1999; Van Wachem et al., 2001a,b).

When a gas in vertical risers transports the particles, experimental studies have shown that they
are distributed non-uniformly over the cross-section (Yerushalmi et al., 1978; Bader et al., 1988;
Horio and Kuroki, 1994). To handle the complicated phenomena in vertical pneumatic transport
of solids, two theoretical approaches are proposed, namely the Eulerian and the discrete particle
approaches.

The Eulerian model considers the particulate phase as a continuous fluid interpenetrating and
interacting with the fluid phase (Gidaspow et al., 1989; Kuipers et al., 1992). The kinetic theory of
granular flow is used in the Eulerian model to offer a theoretical framework for simulating gas–
solid flow with particles of different size and/or different density (Kumaran and Koch, 1993;
Mathiesen et al., 2000; Van Wachem et al., 2001a,b). However, severe difficulties are encountered:
first many closure laws related to the mutual interaction of particles belonging to different classes
have to be formulated; moreover, the universality of the used constants is questionable (Bolio
et al., 1995; Cao and Ahmadi, 1995).

With increasing computer power, discrete particle models have become very useful and versatile
tools to study the dynamics of gas/particle flows. In this approach, each particle is treated by
solving Lagrangian equations of motion for all the particles of the system, with a prescribed set of
initial conditions. Once the flow properties and the particle properties are known, the interface
quantities between both phases can be calculated. It offers a more natural way to overcome the
aforementioned problems, since each individual particle is tracked in the simulation. Moreover, it
provides a powerful tool to investigate the detailed phenomena at the individual particle scale and
to examine local phenomena such as particle to bed (or bed to particle) heat and mass transfers.
This approach was used to simulate gas–solid fluidization in the last decade. Phenomena such as
bubbling, slugging and solid transport in circulating fluidized bed (CFB) can be simulated (Tsuji
et al., 1993; Hoomans et al., 1996, 2001; Xu and Yu, 1997; Ouyang and Li, 1999; Helland et al.,
2000; Van Wachem et al., 2001a,b). Some researchers simulated clusters in CFB. Tanaka and
Tsuji (1991) investigated the cluster formation in a vertical riser and the particle-induced insta-
bility in gas–solid flows. They showed that particle–particle interactions play an important role in
the cluster formation and they cause flow instabilities even when the mean concentration is about
0.5%. Tanaka and Tsuji (1991) and Yonemura et al. (1993) observed that gas velocity decrease
and particle loading increase result in instability and inhomogeneity. Direct Monte Carlo model
was used by Ito et al. (1998) to simulate the dynamics of clusters. The individual particle be-
haviour can only be obtained statistically because particle collision is described from statistics.
Ouyang and Li (1999) developed a particle-motion-resolved discrete model to simulate hetero-
geneous structure in gas–solid fluidization. Helland et al. (2000) studied the cluster formation in
gas-particle CFB. They studied the influence of porosity function and observed large difference of
the local flow as a function of porosity.

Great achievements have been made to simulate the cluster formation in the CFB riser.
However, to simulate the cluster formation, several researchers (Tanaka et al., 1995; Ito et al.,
1998; Helland et al., 2000) considered that the particles were distributed uniformly in the riser as
an initial condition. This assumption is not realistic for predicting the cluster formation in CFB.
In the particle-motion-resolved discrete model (Ouyang and Li, 1999), the interactions forces
between particle and fluid, and vice versa, were considered separately which does not obey
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Newton’s third law. In the authors’ opinion, this assumption is questionable since it is important
to obey Newton’s third law in the CFB system.

The purpose of this paper is to simulate a realistic process of cluster formation in CFB risers. In
particular, we emphasis the influence of particle properties, porosity function and gas velocity on
the global particle flow structure and the formation and development of local regions of higher
particle concentration, i.e. ‘‘particle clusters’’.

In the model, the particle motion consists in collision steps and free flight steps. The particle
interaction is described as instantaneous, binary and inelastic collision with friction, and not only
by the fluid determines the flight step but also by its neighboring particles. The interaction forces
between fluid and particle, and particle and fluid obey Newton’s third law. The gas flow is cal-
culated using Navier–Stokes’ equations. Since collision between particles is the dominant inter-
action mechanism, we first describe the physics of collision. Then, fluid hydrodynamics and the
computing method are presented. Finally, we comment our simulation results for CFB of particles
in both homogeneous and heterogeneous (binary mixture) cases.

2. Particle dynamics

2.1. Treatment of collisions

The main assumptions of the collision model are:

• particles are spherical and quasi-rigid;
• collisions are binary and instantaneous with a contact point;
• interaction forces are impulsive and all other finite forces are negligible during collision;
• motion is two-dimensional with the particle mass centre moving in one plane;
• both the restitution and the friction coefficients are constant in a simulation.

The collision model used in this work follows mainly the methodology proposed by Wang and
Mason (1992). Three parameters defining particle to particle and particle to wall interactions are
introduced. First parameter is the coefficient of normal restitution, e (06 e6 1), which charac-
terizes the incomplete restitution of the normal component of the relative velocity at the contact
point. Second parameter is the coefficient of dynamic friction (l P 0), which arises in colli-
sions involving sliding. Finally, third parameter is the coefficient of tangential restitution, b0

(06 b0 6 1), which arises in collisions, which return a fraction of the energy stored in the elastic
deformation of both surfaces to the tangential component of the contact velocity.

The collision coordinate system used to describe the collision dynamics is defined in Fig. 1. The
normal unit vector n

*
at the contact point can now defined as

n
* ¼ r

*
a � r

*
b

j r*a � r
*

bj
ð1Þ

where r
*

a, r
*

b are the position vectors of particle a and b.
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For a binary collision of these spheres, applying Newton’s second and third laws can derive the
following equations:

maðv
*

a � v
*

a;0Þ ¼ �mbðv
*

b � v
*

b;0Þ ¼ J
*

ð2Þ
Ia
Ra

ðx*a � x
*

a;0Þ ¼
Ib
Rb

ðx*b � x
*

b;0Þ ¼ �n
* � J

*

ð3Þ

where I ¼ ð2=5ÞmR2 is the particle moment of inertia, J
*

¼
R t¼tc
t¼0

F
*

ab dt, tc is the contact time, R, mp,
v, x are respectively the radius, mass, displacement velocity, rotational velocity of the particle,
and F

*

ab is the impulsive force, mp ¼ 4=3pR3qp, qp is the particle density. Velocities prior to col-
lision are indicated by the subscript 0.

The post-collision velocities of both particles can clearly be calculated when the impulse vector
J
*

is known. That-is-to say, if the force F
*

ab is known as a function of all involved parameters.
Firstly, the relative velocity at the contact point is defined as

v
*

c ¼ ðv*a � v
*

bÞ � ðRax
*

a � Rbx
*

bÞ � n
* ð4Þ

From the relative velocity, the tangential unit vector can be obtained:

s
* ¼ v

*
c;0 � n

* � ðv*c;0 � n
*Þ

jv*c;0 � n
* � ðv*c;0 � n

*Þj
ð5Þ

Eqs. (2) and (3) can be rearranged using the relation ðn* � J
*

Þ � n
* ¼ J

*

� n
*ðJ

*

� n*Þ, and Eq. (4) can
now be expressed as follows:

v
*

c � v
*

c;0 ¼ B1J
*

� ðB1 � B2Þn
*ðJ

*

� n*Þ ð6Þ

where

B1 ¼
7

2

1

ma

�
þ 1

mb

�
; and B2 ¼

1

ma

�
þ 1

mb

�

Fig. 1. Schematic illustration of the collision coordinate system.
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At this point, the following constitutive relations are used to close the above equations:

(1) Coefficient of (normal) restitution: v
*

c � n
* ¼ �eðv*c;0 � n

*Þ.
(2) Coefficient of dynamic friction: jn* � J

*

j ¼ �lðn* � J
*

Þ.
(3) Coefficient of (tangential) restitution: n

* � v
*

c ¼ �b0ðn
* � v

*
c;0Þ.

Notice that the third relation does not affect the components parallel to n
*

and that the com-
ponents orthogonal to n

*
are related by a factor b0. Combining Eqs. (4) and (5) yields to the

following expression for the normal component of the impulse vector:

J
*

n ¼ �ð1þ eÞ v
*

c;0 � n
*

B2

ð7Þ

For the tangential component, two types of collisions can be distinguished that are called sticking
and sliding, whether the initial slip between the particle surfaces ceases or not. As shown by Wang
and Mason (1992), the criterion to determine the type of collision is as follows:

l <
ð1þ b0Þv

*
c;0 � s

*

J
*

nB1

sliding

l P
ð1þ b0Þv

*
c;0 � s

*

J
*

nB1

sticking

ð8Þ

For collisions of sticking type, the tangential impulse is given by

J
*

s ¼ �ð1þ b0Þ
jn* � v

*
c;0j

B1

¼ �ð1þ b0Þ
v
*

c;0 � s
*

B1

ð9Þ

For collisions of sliding type, the tangential impulse is given by

J
*

s ¼ �lJ
*

n ð10Þ
The post-collision velocities can be calculated from Eqs. (2) and (3).

In particle to wall collisions, the mass of particle a or b is infinitely large and the velocity vectors
are all set equal to zero.

2.2. Sequence of collisions

Two main ways were proposed to account for inter-particle collisions; they are stochastic and
deterministic approaches. The stochastic procedure is based on selecting randomly a pair of
particles which are located in the same cell, and then computing a collision probability for this
selected pair and carrying out the collision according to the acceptance–rejection method (Bird,
1989; Illner and Neunzert, 1987). Few researchers used this approach to investigate the hydro-
dynamics in vertical or horizontal pipes (Tanaka and Tsuji, 1991; Wassen and Frank, 2001). With
the rapid increase of computer power, the deterministic approach was used widely in the last few
years (Hoomans et al., 1996; Helland et al., 2000). In the deterministic process, the position and
velocity of each pair of particles in the flow field must be checked in order to define the minimum
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collision time. The most interesting feature of the approach is that it is very convenient to de-
termine the collision time of a pair of different particles. Obviously, this way of treating collisions
consumes computer time because the collision time is proportional to the square of the total
number of particles.

The collision time of a particles pair is defined as the time interval until collision. It can be
calculated from the initial position and velocity vectors of both particles (Allen and Tildesly,
1980):

tab ¼
� r

*
ab � v

*
ab �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð r*ab � v

*
abÞ2 � v

*2

abð r
*2

ab � ðRa þ RbÞ2Þ
q

v
*2

ab

ð11Þ

where tab is the collision time, v
*

ab ¼ v
*

a � v
*

b and r
*

ab ¼ r
*

a � r
*

b are the relative velocity and
position of particles.

If r
*

ab � v
*

ab>0, the particle are moving away from each other and they will not collide. In the case
of a collision with a wall, the collision time depends simply on the distance to the wall and on the
normal velocity component toward this wall.

2.3. Forces acting on a particle

The motion of every single particle in the flow between two collisions is subject to Newton’s
equation of motion. Magnus force, Saffman force, Basset, and the unsteady force are neglected
due to the high ratio of particle density to gas density. Consequently, the particle motion in
suspension is governed by gravity and drag force:

dv
*

p

dt
¼ g

* þ F
*

d

mp

� Vp

mp

rp ð12Þ

where g is gravitational acceleration, F
*

d is drag force, Vp ¼ 1=6pd3
p is the volume of a particle, dp is

the particle diameter, p is the fluid pressure. The third term at the right represents the pressure
gradient force, which can be neglected with respect to the drag force in CFB (Ouyang and Li,
1999; Helland et al., 2000).

The drag force on a suspended particle is given by

F
*

d ¼
1

8
pd2

pC
0
dqge

2ju* � v
*

pjðu
* � v

*
pÞ ð13Þ

where e is the porosity, C0
d is the effective drag coefficient, u

*
is the gas velocity, v

*
p is the particle

velocity, and qg is the gas density.
The effective drag coefficient C0

d depends strongly on the local void fraction in the vicinity of the
considered particle. According to Wen and Yu (1966), it can be written as

C0
d ¼ Cde

�n ð14Þ

where n is the porosity factor.
The drag coefficient Cd for an isolated particle depends on the particle Reynolds number as

given by Rowe and Henwood (1961):
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Cd ¼
24
Rep

ð1þ 0:15Re0:687p Þ Rep < 1000

0:44 Rep P 1000

�
ð15Þ

where the particle Reynolds number Rep is defined as

Rep ¼
eqgju

* � v
*

pjdp

lg

ð16Þ

where lg is the gas shear viscosity.
Eq. (14) shows that the drag force on a suspended particle depends on the porosity and on n

value. Many discussions on n value can be found in literature (Richardson, 1971; Gibilaro et al.,
1987; Haider and Levenspiel, 1989). In a gas–solid system, it has been found that n may reach 9,
depending on the sphericity and the physical properties of the particle. Experimental results
proposed higher n values for non-spherical and for size-distributed particles. The relationship
between C0

d / e�n is shown in Fig. 2, the strong non-linearity of the drag force with porosity is the
most important trend.

3. Gas-phase hydrodynamics

3.1. Governing equations

The gas motion follows a generalization of Navier–Stokers’ equations for gas interacting with
solids, leading to the following equations for mass and momentum conservation in vector form:

Fig. 2. Relation between n and C0
d.
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Continuity equation:

oðeqgÞ
ot

þ ðr � eqgu
*Þ ¼ 0 ð17Þ

Momentum equation:

oðeqgu
*Þ

ot
þ ðr � eqgu

*
u
*Þ ¼ �erp þ F

*

p–g � ðr � e��ss�ssgÞ þ eqgg
* ð18Þ

where F
*

p–g and ��ss�ss are respectively volumetric particle–fluid interaction force and viscous stress
tensor. The fluid viscous stress tensor is given by an expression analogous to that for a Newtonian
fluid (Anderson and Jackson, 1967), that is

��ss�ss ¼ l0
f

��
� 2

3
lf

�
r � u

�
dkk þ lf ½ðruÞ þ ðruÞ�1 ð19Þ

where dkk is the Kronecker delta, and l0
f is the fluid bulk viscosity. Under the present simulation

conditions, l0
f can be neglected (Bird et al., 1960).

3.2. Interaction force

As the fluid drag force acting on each particle is known, according to Newton’s third law of
motion, the volumetric fluid–particle interaction force can be determined by

F
*

p–g ¼ �
Pkc

i¼1 F
*

d

DV
ð20Þ

where DV is the volume of a computational cell, and kc is the number of particles in the cell. The
volume is taken to be equal to DX �DY � dp (where DX and DY are the X and Y dimensions of a
computational cell), �ddp is the simple mean value of the particle diameter in the considered com-
putational cell of the discrete particle model:

�ddp ¼
Pk00

i¼1 dp

k00
ð21Þ

where k00 is particle number in a computational cell.

3.3. Calculation of porosity

For each cell of the computational domain, porosity can be calculated on the basis of the area
occupied by the particles in the cell. Eq. (14) shows that porosity is a very important parameter
which influences strongly both the gas-phase and the solid phase motions. The voidage is obtained
by subtracting the sum of the particle volumes from the volume of a fluid cell. When a particle
overlaps one neighboring cell or more, the volume fraction included in a particular fluid cell is
taken into account to calculate the voidage of the cell. The porosity in the cell is

e2D ¼ 1�
Pkc

i Si
DS

ð22Þ
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The porosity calculated by Eq. (22) is based on a 2D analysis. Therefore, it is inconsistent with the
applied empiricism in the calculation of the drag force exerted on a particle and of the interfacial
friction, since actually the relevant correlations are based on 3D systems. In order to be more
consistent, we used a 3D porosity (e3D) deduced from that calculated on area basis (e2D) by
(Ouyang and Li, 1999):

e3D ¼ 1�
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffi
p

ffiffiffi
3

pp ð1� e2DÞ3=2 ð23Þ

4. Computational method

• The particle motion was divided in two steps: collision step and free flight step. The former is
controlled by the dynamics of collision as described in Section 2.1, the latter is controlled by
Eq. (12).

• Start: setting randomly some particles at the bottom of the riser, and causing a small distur-
bance obtained as initial conditions. Then, the particles began to move because of the gas flow,
which was injected into the riser uniformly from the bottom.

• There was no obstacle at the exit, and consequently the particles were free to leave with gas
flow. The inlet solid flux was set constant. Therefore, the simulated process is similar to a prac-
tical CFB riser, in which the particle number varies with time.

Table 1

Physical and numerical simulation parameters

Properties Value

Bed height, H 37.8 cm

Bed width, W 7.0 cm

Temperature in the riser, T 1123 K

Gas density, qg 0.32 kg/m3

Kinetic viscosity of gas, lg 4:552� 10�5 kg/(m s)

Gas bulk velocity, u 6.5 and 7.2 m/s

Particle diameter, dp

Sand, ds 0.7 mm

Alumina, da 1.2 mm

Particle apparent density, qp

Sand, qs 2650.0 kg/m3

Alumina, qa 1350.0 kg/m3

Coefficient of restitution for particle–particle/wall collision, e 0.9 and 1.0

Coefficient of friction for particle–particle/wall collision, l 0.3 and 0.0

n value 4.7 and 2.3

Number of grid cells, I � J 22� 44

Initial particle number in the riser 748

Mass loading ratio at the inlet cell 0.1 kg(particle)/kg(gas)

Total number of simulated particles in the riser >7000

Time step of gas, t 5:0� 10�5 s
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• Using a ‘‘nearest neighbor list’’ saved substantial CPU time. When looking for a collision part-
ner for a particle, only the particles in the neighbor list must be scanned. We chose the diameter
of the neighbor list to be five times that of the particle.

• The conventional SIMPLE (semi-implicit method for pressure-linked equations) method (Pat-
ankar, 1980) was used to solve the equations for the fluid phase. The governing equations were
discretized in finite volume form on a uniform, staggered grid. The second-order central differ-
ence scheme was used for the pressure gradient and divergence terms. The first-order up-wind
scheme for the convection term and a second-order Crank–Nicholson scheme for the time de-
rivative were used, respectively.

• Boundary conditions: For the fluid velocity, the no-slip boundary condition was applied to left
and right walls, and zero normal gradient condition was set to the top exit. At the inlet cell,
fluid velocity was imposed. For the porosity and pressure correction, the zero normal gradient
condition was used along the boundaries. The pressure, which was obtained from the pressure
correction at all inner points, was calculated on the boundaries by using a second-order extra-
polation from the inner points.

• Computation procedure: After the main loop initialisation, the calculation continued until the
time exceeds the specified end time. Within the loop, the forces acting on a particle were calcu-
lated first. Knowing the particle velocities and positions, a sequence of collisions was processed,
where the dynamics of a single collision was calculated using the collision model. At the end of

Fig. 3. Calculation domain and grid arrangement of the simulation.
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this step, the particle position and velocity were known. After calculating the cell porosity and
the force acting on the gas, the gas flow field was obtained by solving Navier–Stokes’ equations.
Finally, the user specified data were saved in the output.

• Computation conditions: Both computation conditions and physical and additional parameters
used are displayed in Table 1. The simulated CFB consists in a rectangular container of 7.0 cm
width and 37.8 cm height. The calculation domain and the grid arrangement are shown in
Fig. 3.

5. Results and discussion

5.1. Sensitivity to model parameters

A sensitivity analysis was performed to investigate the influence of the three key parameters: the
restitution coefficient, e, the friction coefficient, l, and the porosity factor n. In all these simu-
lations, other conditions were identical (Table 1).

Figs. 4–6 show time series of particle structures and the velocity distribution of the gas phase in
the riser for different parameters values. They clearly demonstrate that the results are highly
sensitive to the restitution and friction coefficients to the porosity factor. In the case of ideal
particles (e ¼ 1:0, l ¼ 0:0), a rather homogeneous dispersion of particles and almost no cluster
formation in the riser can be observed. In the case of more realistic interactions between particles

Fig. 4. Time series of particle structure in the riser (l ¼ 0:0, e ¼ 1:0, n ¼ 4:7, qp ¼ 2650 kg/m3, dp ¼ 0:7 mm, ug ¼ 6:5
m/s).
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(e ¼ 0:9, l ¼ 0:3), a heterogeneous distributions of particles with formation of clusters at various
levels in the riser. When n ¼ 2:3, the clusters are also formed but their formation and disap-

Fig. 5. Time series of particle structure and velocity distribution of the gas phase in the riser (l ¼ 0:3, e ¼ 0:9, n ¼ 4:7,
qp ¼ 2650 kg/m3, dp ¼ 0:7 mm, ug ¼ 6:5 m/s).
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pearance are much slower than for n ¼ 4:7, because the forces acting on the particles decrease (see
in Fig. 2). It can also be seen on the figures that the gas flows towards the regions of high porosity.
Highly preferential flow leads to a very strong non-uniform fluid drag force in the riser, which in
turn affects greatly the particle structures. Fig. 7 shows the distributions of the particle kinetic
energy and velocity for elastic (Fig. 7a–c) and non-ideal particles (Fig. 7d–f). Most particles move
upward for elastic collisions, whereas a lot of them move downward for non-ideal collisions. The
kinetic energy distribution of elastic particles is more uniform than that of non-ideal particles.
Kinetic and rotational energy of the particles is partially dissipated during collisions of non-ideal
particles. This means that their velocity after impact is smaller than in the ideal case, thus leading
to configuration where particles are less spaced, resulting in a lower porosity value. Eqs. (13) and
(14) show that the lower the porosity the higher the drag force, which results in the particles
movement upward. However, as shown in Figs. 4–6, a lower porosity also results in gas phase
movement around the cluster, thus reducing the drag force on the particle because of the decrease
of relative velocity between gas and particle (see Eq. (13)). The force increase due to the porosity
decrease is lower than the force decrease due to the reduction of the relative velocity. Conse-
quently, the particle vertical velocity decreases.

Fig. 8 shows the variation of particle number with time in both ideal and non-ideal cases. The
final particles number injected into the bed is more than 7000. First, there is no difference between
ideal and non-ideal cases. Then when time increases, elastic particles are flowed out of the riser
more than non-ideal particles. Clearly, the circulating rate in CFB depends on the particle
properties.

Fig. 6. Time series of particle structure and velocity distribution of the gas phase in the risers (l ¼ 0:3, e ¼ 0:9, n ¼ 2:3,
qp ¼ 2650 kg/m3, dp ¼ 0:7 mm, ug ¼ 6:5 m/s).
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Fig. 9 illustrates the source terms in the momentum equation for u and v directions. Both of
them are large and unevenly distributed. As argued above, the algorithm is able to converge,

Fig. 8. Variation of particle number injected in and staying inside the riser with time.

Fig. 7. Comparisons of the distribution of the particles kinetic energy and velocity for elastic (a,b,c) and inelastic

particle (d,e,f).
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whereas, in order to improve the convergence, previous researchers used special calculation al-
gorithms taking into account the unevenly distributed source terms (Paulsen and Holst, 1995).

5.2. Binary mixtures

First, we studied two types of binary mixture of particles: same density and different size, and
same size and different density (with d1=d2 ¼ q1=q2). Fig. 10, plotting the ratio of the particle

Fig. 9. u and v source terms (a) u direction, (b) v direction.
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number of one class at a given height to the total particle number of this class versus the bed
height, shows that all the large/heavy particles remain in the riser, whereas 15–16% of the small/

Fig. 10. Particle distribution along the riser (t ¼ 1 s). Case: same density different diameter and same diameter different

density.

Fig. 11. Time series of particle structure in the riser (l ¼ 0:3, e ¼ 0:9, n ¼ 4:7, qp ¼ 2650 kg/m3, dp ¼ 0:7 mm, and

qp ¼ 1350 kg/m3, dp ¼ 1:2 mm, ug ¼ 6:5 m/s).

1816 H. Zhou et al. / International Journal of Multiphase Flow 28 (2002) 1801–1821



light particles flow out. A tendency to segregate seems to appear with the mixture of two-diameter
particles.

The second case considered a binary mixture of particles different in both size and density, the
diameters and density being correlated by qsds ¼ 1:15qbdb. Fig. 11 illustrates time series of flow
structure for the system with gas velocity ug ¼ 6:5 m/s. It shows a heterogeneous distribution of
particles with clusters displacement at various levels in the riser. All the injected large particles
remain in the riser, whereas 16.1% of small particles flow out. Fig. 12 shows the particle distri-
bution in the riser. The particles behave differently in the system: small particles are rather evenly
distributed in the bed, whereas the big ones tend to accumulate in the lower part of the bed. This
could be the first step towards segregation, which actually requires much longer time to occur. For
gas velocity slightly higher (u ¼ 7:2 m/s), most particles are still distributed heterogeneously, but
the distribution is more uniform. The higher velocity results in higher drag force on the particles,
thus particles moving faster and then higher kinetic energy, which easily destruct the ‘‘initial
cluster’’ (small cluster with several particles), and therefore the probability of cluster formation
decreases. The flow structures agree with those observed by Tanaka and Tsuji (1991) and
Yonemura et al. (1993).

5.3. Cluster formation and disappearance

Fig. 13 is a snapshot of the local gas velocity, and particle structure (a) and particle velocity (b)
in the lower part of the riser. The structure changes rapidly with time. The particle velocity is
much smaller in the cluster than in the region of higher porosity due to the non-uniform distri-
bution of gas velocity caused by the particle flow pattern. A few particles move around the clusters
with high velocity and others collide with the cluster. Therefore, the cluster either captures them
or they destruct it. Some particles move apart from the wake of the cluster, which causes its
disappearance.

Fig. 12. Particle distribution along the riser (t ¼ 1:2 s). Case: different density and diameter.
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Fig. 13. Snapshot of the gas velocity, particle structure (a), and particle velocity (t ¼ 1:2 s) in the riser between 0.075

and 0.15 cm (corresponding to Fig. 5).
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Fig. 14 shows the final (t ¼ 1:2 s) position of the particles set initially inside the riser (corre-
sponding to Fig. 5). After 1.2 s, half the particles have been flowed out of the riser (55.7%). It is
interesting to notice that some particles are still remaining at the bottom of the riser although they
were set in the riser at initial time. The particles move irregularly, which is favorable to particles
mixing in the riser, and they tend to move toward the wall.

6. Conclusions and future work

We have investigated the influence of the collision parameters (from ideal to realistic particles),
of the porosity factor, and of the particle density on the global and local flow structures in a 2D
CFB riser. We found that the particle–particle and particle–wall collisions together with the gas
particle interaction dominate the formation of heterogeneous particle flow structures, especially
the formation of clusters. In terms of kinetic energy and velocity distribution, the difference be-
tween ideal and non-ideal particles results in relatively homogeneous and heterogeneous particle
flow structures, and the porosity function has significant effect on the structures. The gas flows
preferentially in the region of high porosity, which leads to non-uniform drag force on the par-
ticles and affects strongly the particle flow structures. When fluidizing a binary mixture, segre-
gation is predicted. The examination of the cluster microstructure shows that the particle velocity
inside the cluster is smaller than around it.

In fact, both theoretical analysis and experimental results (Zelenko et al., 1996; Zhou et al.,
2000) showed that turbulence is another main reason, which dominates the particle flow structure

Fig. 14. Final positions of initial particles after 1.2 s.
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in the CFB riser. Consequently, further analytical and numerical works are currently developed to
achieve more realistic simulations of turbulent flow.
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